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FOREWORD *

This report documents an in-house wind tunnel test program
conducted by the Aerodynamics and Airframe Branch, Aeromechanics
Division, Air Force Flight Dynamics Laboratory, Wright Patterson
AFB, Ohio 45433. The work was performed from June 1973 to
November 1975 under Project 14760313.

This effort was supported by the Air Force Weapons Laboratory

under Project Order 73-159 which funded procurement of the wind

tunnel model.

The author wishes to acknowledge AFFDL/FXN and AFFDL/FYA
for their contributions to this effort. Mr. Richard D. Talmadge,
AFFDL/FYA, deserves a special thanks for his expert advice and

assistance during the planning and data reduction phases of this
effort.

In addition Mr. Richard D. Dyer and Capt. William A. Sotomayer
of AFFDL/FXM participated in the planning, model design, test and

data analysis phases of this effort. Their efforts were of major

assistance.

This report has been reviewed and is approved.
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[ The following figure titles and information were omitted or unreadable in

the printed copies.

Page 36 - Figure 12. Close up of Configuration 1 with Fence I and Rounded
Aft Lip

Page 85 - Figure 9A. Effect of Blowing at the Forward Lip on Static Pressure

Distribution, Configurationl.

Page 87 - TFigure 11A. Effect of Blowing over Aft Curved Lip on Static

Pressure Distribution, Configurationm 1.

Page 93 - Figure 17A. Mach Effects on Static Pressure Distribution with

Single BDU-8 in Bay, Configuration 2.

Page 99 - Figure 23A. Effect of Fence I with and without Store L in

Forward Bay, Configuration 3.

Page 92 - The [J symbol represents data with Fence I.
The O symbol represents data without a fence.

RODNEY L. ‘CLARK

Aerodynamics and Airframe Branch
Aeromechanics Division .

Air Force Flight Dynamics Laboratory




ABSTRACT

This effort was directed toward experimental investigation
of the static and dynamic pressure levels within shallow weapons
bay cavities. Several turbulence reduction techniques and various
bay geometry features were investigated. These included forward
and aft blowing slots, fences positioned at the upstream cavity
lip, and rounded cavity lips. Installation of a 50% porosity
fence at the forward lip was determined to be the single most

effective technique.
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1 INTRODUCTION

This report documents an exploratory investigation of the aero-
acoustic environment in and around a generic weapons bay at Mach numbers
from .7 to .9. High dynamic (oscillatory) pressure levels are experienced
in modern aircraft weapon bays. High fatigue stresses can result which
can cause both weapon and aircraft structural and equipment failures.
Historically, the problems associated with internal carriage and delivery
of air droppable and air launched weapons have increased significantly
as flight velocities have increased.

This report describes an AFFDL wind-tunnel test of several weapons
bay geometries, including a tandem bay arrangement, and various turbu-
lence reduction techniques. The latter included fences; blowing from
the forward bulkhead over the cavity and blowing over the rear bulkhead;
and lip shaping. The weapons bay model installation is shown in Figure 1.

The objectives of this effort were to evaluate the technical validity
of conducting weapons bay turbulence investigations in the AFFDL Trisonic
Gasdynamic Facility utilizing a relatively low cost, small scale weapons
bay model; and to evaluate experimentally several turbulence reduction
techniques. The data from this test will be correlated with similar

data from tests of a 1/15-Scale F-111 model and flight test data obtained

in the weapons Bay of an F-111 aircraft.
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11 TEST APPARATUS AND DATA ANALYSIS PROCEDURES
1. Model Description

The weapons bay wind tunnel model was designed for transonic
and supersonic testing up to Mach 3.0 and a maximum dynamic pressure
(q) of 1300 psf. The bay cavity was located in a flat plate model
designed to produce as nearly as possible two dimensional flow entering
the cavity. Figure 1 shows the model installed in the AFFDL Trisonic
Gas Dynamic Facility. The uninstalled model along with the various
inserts used to reconfigure the model can be seen in Figure 2. Also
in Figure 2, the two store shapes, a single BDU-8 and a high solidity
launcher simulation designated store L, boundary layer rake and one of
the four turbulence reduction fences (See Figure 6) can be identified.
The tandem bay insert is shown with store L positioned in the forward
bay. Figure 3 compares the geometries of configurations 1 and 2.
Typical cross sections of Configurations 1 and 3 are presented in
Figures 4 and 5.

The flat surface of the model is 18 in. long and 5 in. wide
with a sharp, wedge (6°) shaped leading edge designed to accommodate
the low supersonic design condition, Mach 1.3. When installed in the
transonic test section described below, the model produced a blockage
of 4.47%.

The various bay geometry changes can be accomplished with
a minimum effect on the model instrumentation. Three basic bay geo-
metries were tested. Configuration 1 consisted of a simple rectangular

cavity; Configuration 2 was similar to the weapons bay shape of the




F-111 aircraft; and Configuration 3 was a tandem bay arrangement.
Effects of weapon bay doors were not investigated in this test; however,
Reference 1 reports on a related effort during which the effect of

bay doors were evaluated on an F-111 model and found to increase the
level of the dynamic pressures (turbulence level) in the cavity.

Two blowing slots were provided for Configuration 1 each with
a span of 2.5 in. and a width of .03 in. (Figure 7 shows the location of
these nozzles as well as the rounded lip inserts.) The forward bulkhead
nozzle was canted upward at an angle of 5.5° relative to the surface of
the model. The aft nozzle was located in the roof directly ahead of the
rear bulkhead.

2. Model Instrumentation

The primary instrumentation consisted of non-screened Kulite
CQ-080-25 differential pressure transducers. Figure 8 depicts the
location of the pressure transducers along with the secondary static
pressure tap and thermocouple instrumentation. The dimensional and non-
dimensional location of the pressure instrumentation is listed in Table
I. Iron/constantan thermocouples were located on the centerline of the
bay roof at X = 1.125 in. and X = 7.625 in.

The model was designed for a total of 22 transducers and 35
static surface taps. A total of 25 Kulite transducers were procured;
however, at the start of the test program only 15 were functional
due either to electrical failures or damage to the silicon crystal

diaphragm. The model as delivered also had several inoperable static

pressure taps. These taps had internal leaks which apparently occurred




at the epoxy bond line between the pressure tubes and the model. Repair
would have required complete model disassembly which was not feasible
prior to entry into the wind tunnel. The primary data loss which resulted
was definition of the local static pressure and as a result the local
Mach number entering the cavity.

It must be emphasized that transducer failures prior to the
start and during this test program significantly reduced the information
gained relative to the distribution of turbulence throughout the cavity.
While centerline turbulence distributions are presented in Section III,
the relatively large spacing between some of the transducers is a
significant concern. The data are considered valid for comparison
purposes between configurations at the same relative cavity position.

3. Data Recording and Reduction Procedures

The electrical output of the Kulite pressure transducers
was processed in two ways. All transducer signals were amplified and
overall signal levels obtained on line using a Hewlitt-Packard Model
3400 RMS (Root Mean Square) Volt Meter. Ten channels were simultane-
ously recorded on FM tape for further off-line data processing. The
overall signal levels from the RMS meter were converted off line to
pressure (PRMS’ psf) and P

cus/

The recorded FM data tapes were processed by the Aero-Acoustics

as presented in Section III.

Branch (AFFDL/FYA). Third octave frequency plots were provided along
with the integrated pressure levels over the frequency range up to
8000 Hz. 1In addition, AFFDL/FXN personnel performed narrow band

spectral frequency analysis of selected data points.




The static pressure data was recorded using IBM card punch
equipment. Subsequent data reduction was performed on the CDC 6600
computer and representative Calcomp plots are presented in Appendix 1
along with a brief discussion of the data.

Table II presents a comparison of P_  /Q turbulence levels as

RMS
measured with the RMS meter and derived from the third octave analysis.
Generally good agreement was observed. The meter values were used as the
primary source of turbulence level. Turbulence levels were not available
for all transducers from the tapes for a number of runs because high
amplifier gain settings resulted in clipped signals.

Data Reduction Equations:

Root Mean Square Dynamic Pressure:

f = (RMS, volts) X (Transducer constant, volts/psi) ‘
(144, 1n2/£62)

PRMS,pS

Jet Thrust or Momentum Coefficient:

CJ = Isentropic Thrust
Qs
= 3 oV -
C; = (Airflow, ft /sec) YRTg ( 31) (1 -Po/PM)Y l/Y
asg Y

4. Test Facility Description
The AFFDL Trisonic Gasdynamic Facility is a closed circuit
continuous flow wind tunnel. Flow in the circuit is maintained at a low
dew point and at a constant total temperature of approximately 100
degrees Fahrenheit. The total pressure is variable allowing the main-

tenance of a constant Reynolds number over a large Mach number range.




For transonic testing in this facility a 15 in. square vari-

able porosity slotted test section insert is used. Both slotted and
solid sidewalls are available for this insert. The solid sidewalls
were used during this test to permit Schlieren pictures to be obtained
through the windows in these sidewalls. The windows were removable
permitting easy model access for model changes. During this test, the
floor and roof porosity was set at the maximum open (127) setting.
The plenum of the test section is aspirated by variable angle diffusing/
converging plates (flaps) at the section exit plane. These plates were
maintained at the full open position during this test.

Observation of the flow field around the model using the
Schlieren system revealed a flow anomaly originating from the leading
edge of the model with the flat plate aligned with the tunnel centerline
(alpha = zero). A small nose up alpha of 3/4 of a degree eliminated
this flow condition. Therefore, this alpha, 3/4 degree positive, was

selected as alpha zero for this test.




TABLE I. Location of Pressure Instrumentation

1. Dynamic Pressure Transducers

Configuration 1

Transducer X(in)  x/L Y(in) Y/L Z(in Z/L
(1) (1)
1 125 -.02 0 0 0 .
2% 0 0 0 0 .375 .05
3* .188 .02 1.5 .18
4% .875 .10
3.8 .45
4.56 .55
7.937 .95
g* 8.375 1.0 .75 .09
g 8.375 1.0 | \ .375 .05
| 10%** 8.625  1.03 0 0
11 .188 .02 1.25 .15 .75 .09
12 3.8 .45 $ l l
13 6.250 .75
14 3.8 45 -1.25 -1.5 l
15 7.937 .95  -1.25 -1.5

lip installed.

*  Transducers are covered when rounded lips installed.

**  Transducers are relocated 7/8 in aft when aft rounded

(1) See Figure 3 for definition of coordinate system.




TABLE I. (cont)

Configuration 2 (Note: Identical to Configuration 1 except as indicated).

Transducer X(in) X/L Y(in) Y/L Z(in) Z/L
4 .89 1 0 0 77 .09

5 3.8 .45 1.075 13

6 4.6 .55 1.1 13

7 7.99 .95 1.235 .15
13(2) 8.375 1.0 .375 .05

12 3.8 .45 1.25 .15 .75 .09

15 7.937 .95 1.25 -.15 .75 .09

(2) Transducer #13 relocated to aft bulkhead following Configuration 1
test phase.
Note: Transducers # 2,3,8,9,10,11, and 14 failed or were damaged
prior to initiation of Configuration 2 tests.




TABLE I. (Cont)

Configuration 3 (Note: Identical to Configuration 1 except as indicated).

Transducer X(in) X/L Y(in) Y/L Z(in) Z/L
13(2) 8.375 1.0 0 0 .375 0
12 3.8 .45 .9 1 .8 .10
15 7.937 .95 -.9 ~. 11 .8 .10

(2) Transducer # 13 relocated to aft bulkhead following Configuration 1
test phase.

Note: Transducers # 3 and 4 failed during model reconfiquration.
Data from #13 and 15 were questionable.

10




2.

TABLE I. (cont)

Static Pressure Tap Locations

Configuration 1

Static X(in) X/L Y/ (in) Y/L Z(in) /L
Tap
1 -1.0 -.119 1.6 191 0 0
4% 0 0 0 0 625 075
5 0 0 0 0 1.25 .149
6% .348  .042 0 0 1.50 179
7% 737 .088
8 1.514  .181
9 2.016 .24
1 3.312  .395
12 3.662  .437
13 4.412 527
15 5.687  .679
17 6.750  .806
18 7.375  .881
19 7.787  .930 ‘ ¥
21% 8.375 1.0 1.25 .149
22% 8.375 1.0 .625 .075
20%% 8.516 1.017 ‘ 0 0
25%* 8.902 1.063
26%* 9.408 1.123 Y y
27%* 9.375 1.12 1.6 191
28 8.1 .967 1.25 .149 .75 .09
29 6.1 .728
30 3.662  .437
31 2.02 .24
32 3.48 .042
33 4.19 .5 1.6 191 0 0
34 1.6 191 -1.6 -.191 l l
35 6.8 812 -1.6 -.197

11




TABLE I.

(cont)

Configuration 2 (Note: Identical to Configuration 1 except as

indicated.)

Static X/ (in) X/L Y(in) Y/L Z(in) Z/L
Tap

6 .35 .04 0 0 71 .09
7 .75 .09 .77 .09
8 1.52 .18 .86 .10
9 2.0 .24 .92 1
n 3.34 .40 1.06 .13
12 3.69 .44 1.08 .13
13 4.53 .54 1.1 .13
15 5.8 .69 1.15 .14
17 6.84 .82 1.2 .14
18 7.45 .89 1.21 .14
19 7.86 .94 ' R W 15
30 3.662 .44 1.14 .14 .75 .09
31 2.18 .26 1.03 12 .75 .09
32 No tap 32 in Configuration 2

12




TABLE I. (cont)

Static Pressure Tap Locations (cont)

Note: Static Taps 2,3,10,14,16,20, and 23 were anperative due to
leaks or data system failures during this test.

* These taps are covered when rounded 1ips installed

** These taps are relocated aft 7/8 in when rounded aft 1ip installed.

13




TABLE I. (cont)

Configuration 3 (Note: Identical to Configuration 1 except as

indicated)
Static X/ (in) X/L Y(in) Y/L Z(in) Z/L
Tap
28-32 u.c u.c .93 11 .8 .096
U.C. - Unchanged
14
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Figure 2a. Veapous Bav Model Prior to Wind Tunnel Installation
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III TEST RESULTS

1. 0il Flow and Boundary Layer Survey Results

The flow properties on the model were first evaluated using
an oil flow technique and a closed weapons bay cavity. This configura-
tion was obtained by fabricatiné a flat plate which completely covered
the lower flat side of the modei. This plate had a sharp leading edge
which formed a glove around the actual model leading edge. O0il drops
were distributed over the model surfaces and flow of this oil was
observed under various Mach and angle of attack conditions. Flow on
the flat plate was two-dimensional for all test conditions with no
evidence of flow around the corners of the model in either direction.
Based upon these re;ults, flow conditions with the.bay open were
assumed to be two-dimensional at the entrance to the bay cavity.

Following removal of the plate described above, a boundary
layer rake was installed at the leading edge of the bay and boundary
layer (B.L.) profiles obtained with and without a cellophane tape B.L.
trip located approximately an inch behindkthe model leading edge.
Figure 9 presents profiles for Mach .7 and .9, and at Reynolds numbers
of 3 and 5 million per foot. Turbuient boundary layers were observed
with and without the B.L. trip. The trip was installed for the remaining
runs except for the last six which were used to isolate the effect of
the trip upon the turbulence levels (PRMS/Q) in the tandem bay (Configu-
ration 3). Figure 10 presents these results which show a small effect
at an angle of attack of 6 degrees in the forward bay and no effect on

the aft bay.

24




2, Turbulence Level Test Results

a) Configuratioa 1

The basic weapons bay, Configuration 1, has a rectangular
shape with length to depth ratio (L/D) of approximately 5.6 (L = 8.375
in., D = 1.5 in;). Figure 11 shows this configuration with Fence I
installed. Figure 12 is a close up view of this configuration with
the rounded aft 1lip installed. Details of the model instrumentation
can be seen. Figure 13 is an installation view showing the location
of‘the B.L. trip. |

Figures 14 through 31 present turbulence distributions for
Configuration 1 along the cavity center line as a function of X/L,
pressure transducer position (measured from the forward cavity lip)
non-dimensionalized value obtained»bé overall cavity length (L = 8.375 in.)
This parameter is used throughout this report to relate location of turbu-
lence level measurements between the three configurations tested.

Figures 14 through 22 present the‘effects of angle of attack,
Mach number and Reynolds number on the turbulence level of this config-
uration. No significant trends are noted as a function of these variables
over the ranges investigated; i.e. angle of attack from 0 to 6 degrees,
Mach numbers from .7 to .9 and Reynolds's numbers of 3 and 5 million per
foot. These data can be characterized as showing sharp increases in
turbulence level from front to back in the cavity with peak levels

observed on the aft bulkhead or just aft of the cavity. The vear

cavity roof (X/L = .95) experiences the next highest turbulence level.

25




The peak level observed on the rear bulkhead at Mach = .8, RN =

3 million/ft and alpha = 0 degrees was a PRMS/Q of a .290. A PRMS/Q
level of .303 was observed just aft of the bay at Mach = .69, RN =

5 million/ft, and aléha = 0 and 3 degrees. The highest roof level
(PRMS/Q = ,212) was observed at Mach .69, RN = 5 million/ft, and alpha =
6 degrees.

Figure 23 compares the effects of the fences shown in Figure
6 on the cavity turbulence level. The fences had a porosity of approxi-
mately 507%. All of the fences were effective in reducing the turbulence
level throughout the cavity. Fence IV (h/L = .036) was the largest and
most effective turbulence reduction fence. The least effective and
smallest was Fence III (h/L = .021). Fences I (h/L = .026) and II
(h/L = .025) produced essentially identical results. Fence I was
selected as representative and used in all subsequent runs evaluating
fence effects.

The second turbulence reduction technique evaluated was
installatioh of rounded cavity lips. Figures 24 and 25 show that
installation of the aft 1lip produced favorable‘results; while, the
addition of the forward lip negated the benefit of the aft lip curva-
ture. Figure 26 presents results with the rounded aft 1ip and Fence
I over an angle of attack range of O t6 6 degrees. Figure 27 compares
the combination of Fence I/rounded aft 1lip versus Fence I/square aft
lip. The former produced slightly lower turbulence levels.

The next turbulence reduction technique evaluated was slot

blowing from the forward lip over the cavity. The jet sheet was directed
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downward at an angle of approximately 5.5 degrees in an attempt to
deflect the shear layer away from the cavity. Figure 28 shows that
PRMS/Q levels increased within the cavity; however, a reduction is doted
aft of the cavity.

Blowing was also evaluated over the rear bulkhead with the
basic square and rounded lip shapes. Again turbulence levels generally
increased. A small turbulence reduction was noted relative to the non-
blowing level at an X/L = .95 (Figure 29) with the basic bulkhead at CJ
= ,142., Aft of the cavity, turbulence levels decreased for both the
basic and rounded configurations (Figure 29). Figure 30 shows that the
level at X/L = .95 was decreasing slowly as CJ was increased froﬁ .034
to .124.

Figure 31 shows the combined benefit of Fence I and rounded
afc 1ip relative to the basic geometry of Configuration 1. This represents
nearly an 807 reduction in the turbulence level measured at the .95 X/L
location on the cavity roof. This combination of fence and aft lip
rounding produced the lowest turbulence levels observed with Configu-
ration 1 during this test program.

Additional investigations of blowing is considered necessary to
completely evaluate this technique. Specifically, higher blowing rates
and a larger forward nozzle injection angle relative to the free stream
should be evaluated. Increasing the forward nozzle angle to 20 or 30

degrees may result in deflection of the shear layer away from the cavity

in a way similar to a fixed fence.
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b) Configuration 2

This configuration is geometrically similar to the internmal
weapons bay of the F-111 aircraft; however, the bay doors were not
modeled. (The effect of the F-111 bay doors on the turbulence level
in the bay has been investigated in a related effort, Reference 2.
The doors were found to increase the turbulence level in the bay.)

The L/D of the Configuration 2 weapons bay was 6.7 ( L =
8.375, D = 1.25 in.). The general geometry of the bay can be seen
in Figure 3, the roof and side wall inserts are shown in Figure 2. The
forward portion of the bay is tapered in width and-depth. These features
along with the overall reduction in depth of the bay were the oniy
changes relative to Configuration 1. The 4.67% BDU-8 store model is
shown mounted to the roof insert in Figure 2.

As observed with Configuration 1, Figures 32 through 34
show no significant angle of attack, Mach number or Reynolds number
effects over the range investigated. TFigure 33b also shows the effect
of angle of attack on the turbulence distribution with a scale model
of a BDU-8 store mounted on the left side of the bay. The store
slightly lowers the turbulence level in the rear portion of the bay.

The peak cavity turbulence levels again were observed on the
rear bulkhead. (The transducer mounted aft of the bay was inoperable
during this test phase.) The peak level observed was a PRMS/Q of
.0825 as compared with a peak level of .29 with Configuration 1 at the
same aft bulkhead location. This significantly lower turbulence

level can only be attributed to the bay geometry changes; however,
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the specific effects of L/D, tapered width, and roof contour were not
isolated.

Configuration 2 was also evaluated with Fence I installed with
the bay empty and with a single store in the bay. Figure 35a shows the
substantial improvement in the bay environment with a fence installed.
Figure 35b shows the effect of adding the single BDU-8 to be small
relative to the empty bay configuration.

Figure 36 does show that over the Mach range investigated
the store does reduce the turbulence level in the rear roof position
without a fence while Figure 37 shows essentially no sfore effect on
turbulence at the Mach conditions evaluated with the fence installed.

The overall effect of Fence I is a reduction of the peak
turbulence level on the aft bulkhead from .08 to less than .02 or
approximately a 75% reduction.

¢) Configuration 3

Figure 5 is a typical cross section view of Configuration 3.
This configuration models a tandem bay with the combined length (8.375
in.) equal to the length of Configurations 1 and 2. Since the same
instrumentation is used, X/L values are based upon a length of 8.375
in.; however, the actual length of each bay was approximately 4.06 in.
and the depth was 1.5 in. which results in an L/D of 2.7. The number
of transducers which were operable at this stage of the test program
was insufficient to permit presentation of meaningful turbulence level
distributions; therefore, data are presented for the .45 and .95 X/L

locations only. These locations correspond to the rear roof position

29




of the forward and aft bays respectively and should represent peak roof
turbulence levels for each bay.

Figure 38 compares the turbulence levels in the forward and
aft bay locations at several Mach numbers as a function of angle of
attack. The forward bay is clearly more sensitive to angle of attack
and Mach number than the aft bay. The turbulence level appears to reach
a peak in the forward bay at an angle of attack of 3 degrees and a Mach
number of .84.

Effect of Reynolds number variation is shown in figure 39.

A turbulence level peak in the forward bay for a Mach number of approxi-
mately .84 is evident, but Reynolds number effect is insignificant.

The installation of store L (See Figure 2) in the forward
bay is shown in Figure 40 to have a moderating effect on the turbulence
level; however, the turbulence level trend with angle of attack is the
same with or without store L installed. (Store L is an attempt to
represent a rotary launcher or bomb cluster; however, the solidity of
the store is much too high and the resulting effects are more repre-
sentative of a very large single store.)

Figure 41 shows the effect of Fence I with and without store
L in the forward bay. The addition of the fence produces a turbulence
level reduction from a PRMS/Q level of .19 to .055 or a nearly 70%
reduction. With the fence installed the turbulence level is essentially
the same with or without store L.
| All of the data discussed above, refers to turbulence levels
on the model centerline. Figure 42 presents data comparing the X/L =

.45 centerline location with the corresponding sidewall location in
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Configuration 3. The empty bay is seen to have a somewhat higher/

turbulence level on the sidewall; however, installation of store L,
reverses this comparison. The centerline and sidewall PRMS/Q values
are essentially equivalent with Fence I installed. It should be noted
that ghis fence has a width of 2.5 in. compared with a bay width of
2.2 in. for Configuration 3.

3. Comparison of Alpha Effects Between Configurations

Figure 43 compares the three configurations over the angle
of attack range. Only the forward bay of Configuration 3 shows a
significant alpha effect. Configuration 1 has the highest turbulence
level while Configuration 2 has the lowest. The forward bay of Confi-
guration 3 approaches the turbulence level of Configuration 1 at the 6
degree alpha condition.

4, Frequency Analysis Results

Two types of frequency analysis were performed. Third octave
analysis provided frequency distributions and turbulence level measure-
ments for comparison with turbulence levels obtained using the on-line
RMS meter.

The second technique, narrowband power spectral density
(PSD) analysis, was used to more accurately determine the cavity
mode frequencies.

Figures 44, 45 and 46 show typical third octave plots for
Configurations 1, 2 and 3. Turbulence levels derived from 1/3 octave
plots are presented in Table II along with the comparable levels
obtained using the RMS meter. Generally, good agreement is observed.

(See also Section II, Paragraph 3.)
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Figure 47 compares the calculated cavity mode frequencies
with the measured values determined from PSD plots. The calculation
method developed by Rossiter (Reference 2), which appears below, was
used. Good agreement was obtained for all three model configurationms

using a o of .25 which is applicable to a cavity L/D of 4.0.

Rossiter Equation:

S, = Strouhal number = fL/U

1
g, =2 - & _
1 M+ 1/k
v

f = Mode frequency

m = Frequency mode number

o = Empirical phase delay parameter

o = 0.25 for cavity L/D = 4.0 (Ref. 3)

Kv = 0.57 (Ref. 3)
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Figure 9. Boundary Layer Profiles with and without
Boundary Layer Trip

(1) Note: Alpha of <75 is true tunnel geometric zero.

See discussion on page 7.
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Figure 14. Angle of Attack Effects (Alpha)on Turbulence
Distribution, Configuration 1.
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Figure 15. Angle of Attack Effects (Alpha)on Turbulence
Distribution, Configuration 1.
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Figure 16. Angle of Attack Effects (Alpha)on Turbulence

Distribution, Configuration 1.
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Figure 18. Angle of Attack Effects (Alpha)on Turbu-
lence Distribution, Configuration 1.
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Figure 32. Angle of Attack Effects on Turbulence
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Figure 35. Turbulence Distributions in Configuration 2.
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Figure 36. Mach Effects on Turbulence with and
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_SYM ALPHA(DEG) RyX 10° FENCE  BAY

@) 3 5.0 I Empty I
a 3 5.0 L__Single BOU-8 |

| |

! | |
o R o
R e T s e
P ' - t I : ! 1
RMS , ! S | L
L o e e BE—
,\! | i | L EX/L
S/ A === ”%;—g
R — ' MR N N
7 8 .9

Mach Nﬁmber
Figure 37. Mach Effects on Turbulence with

Fence I, with and Without BDU-8 in
Bay; Configuration 2.
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Level, Configuration 3; Bays Empty.
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F1gure 40. Angle of Attack Effects on Turbulence with
and without Store L in Forward Bay,
Conf1gurat1on 3.
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SYM  ALPHA(Deg) RN X 10-% FENCE FWD BAY AFT BAY

O 3 5.0 None Empty Empty
0 3 5.0 None Store L  Empty
a 3 5.0 I Store L  Empty
4 3 5.0 I  Empty Empty

X/L = .45 (Peak level observed near rear bulkhead
in fwd bay of Configuration 3.)

i .8 .9
Mach Number

Figure 41. Mach Effects on Peak Turbulence Level
in Forward Bay of Configuration 3,
with and without Store L and Fence I.
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SYM  ALPHA(DEG) R, X 107 FENCE FWD BAY AFT BAY

N
O 3 5.0 None  Empty Empty
0 3 5.0 None Store L Empty
a 3 5.0 I Empty Empty
A 3 5.0 I Store L Empty
X/L = .45

Flagged Symbols are for Left Side Wall

- e
| ]

g
! . jo
_:.._. Ja. ﬁl{ '.
E

Mach Number

Figure 42. Comparison of Turbulence Levels
Measured on Centerline (Roof) with
Sidewall of Configuration 3.
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SYM CONFIG. MACH RNxm-6 x/L

O 1 .8 5.0 .95
A 3 .79 5.0 .45 (Rear of Fwd Bay)
v 3 .79 5.0 .95 (Rear of Aft Bay)
O 2 .79 5.0 .95

Angle of Attack(ALPHA Deg)

Figure 43, Summary of Angle of Attack Effects (Mach
~ ,8) Comparing Representative Turbulence
Levels in the Three Bay Configurations,
Bays Empty.
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FIGURE 45. ONE THIRD OCTAVE BAND SPECTRH
FROM TEST POINT NR 109,
TRANSDUCER NR 6, X/L = .55,
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FIGURE 46a. ONE THIRD OCTAVE BAND SPECTRA
FROM TEST POINT NR 1uQ,
TRANSDUCER NR 5, X/L = .45,
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Figure 475, Cavity Resonant Modes, Comparisoh of Calcu-
lated with Experimental Results
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Figure 47c. Cavity Resonant Modes (Tandem Bays), Com-
parison of Calculated with Experimental

Results
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IV CONCLUSIONS

1. The effect of angle of attack on cavity turbulence level over
the range of 0 to 6 degrees is not significant for shallow cavities
(L/D > 5); however, a significant angle of attack effect was observed in
the forward bay of Configuration 3 with an L/D of 2.7.

2. Over the Mach number range of .7 to .9, Mach number produces
only a minor effect on turbulence level of the weapons bay configurations
investigated.

3. No significant changes are observed in the turbulence levels
between Reynolds numbers of 3 and 5 million/ft.

4., Turbulence levels are significantly reduced by rounding the
aft cavity lip.

5. Installation of a turbulence reduction fence at the leading
edge of the weapons bay is the most effective single turbulence reduction
technique; however, the combination of rounded aft lip plus fence pro-
duced a further reduction in turbulence level.

6. Comparison of Configurations 1 and 2 turbulence levels indicates
that bay geometry; L/D, width distribution and roof slope from front to
back have significant effects on turbulence level; however, the isolated
effect of each of these features can not be determined from the available
data.

7. Good agreement between measured frequency modes and those

calculated using the Rossiter equation is observed.
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APPENDIX

Static Pressure Data

Typical static pressure distributions are presented in the
following figures. Only a limited analysis of this data has been
attempted to date. No significant correlation is observed between
turbulence level and the level of static pressure in the form of

pressure coefficient.

No significant angle of attack, Mach number or Reynolds number

effects are noted over the range of these variables investigated.
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